Control and Management Strategy for Citrus Huanglongbing in USA

Dr. Charles A. Powell

University of Florida
Discovery of HLB in Florida

$9.3 \text{ billion annual economic impact on the state}$

Palmetto Bay *Citrus* sp.

First find locations in August, 2005

Florida City *Citrus maxima*

Photos: Xiaoan Sun and Susan Halbert
Strategies for Citrus HLB control

- Integrated Pest Control
- Cultural Control
- R gene and GM plant
- Chemical control of HLB bacterium
Cultural Control

- Remove all infected plants quickly
 - Pruning (not very helpful)
- Isolation distance (0.9 miles)

![Image of cultural control measures]
Clean budwood and nurseries

- Clean budwood! Citrus Health Program in Florida
- Prevent movement of citrus and citrus relatives
- Eliminate citrus and citrus relatives in the vicinity of commercial production
Chemical control of HLB bacterium

- In vitro systems to screen the effective molecules
- Evaluation of the screened molecules
- Applications of the effective molecules
CITRUS GREENING DISEASE

J. V. da Graça

Department of Microbiology and Plant Pathology, University of Natal, Pietermaritzburg, South Africa

1. Injections of tetracycline and penicillin improve overall plant health and fruit quality – Studies since the early 1970’s show this.
2. Antibiotic residues are short lived (~15 days or less).
3. Only injections were used
4. Improvement lasts for 1 year (often with two injections)
5. Only method that was successful was injection:
 1. Costly
 2. Problems with phytotoxicity using this method.
Regeneration protocol of Las-infected periwinkle cuttings

1. Las-infected periwinkle
2. Cuttings from the plants
3. Treated with CA for 4 hr.
4. Regenerated plants transplanted into big pots after two months
5. Regenerated plants from the treated cuttings
6. Cuttings planted in the pots for 2 months
Graft-based protocol for testing candidate antimicrobials:

- Monitor Las in treated scion
- Monitor ability of antimicrobials to effect migration of Las into seedling
Using the above two optimized screening system, more than 100 molecules were evaluated against HLB bacterium

1. Antibiotics: 31
2. Biocides: 25
3. Peptides: 5
4. Fungicide: 6
5. SAR substances: 6
6. Others: 29
Efficiency of the tested compound were divided into 4 groups based on the Ct value in the inoculated plants, scion infected percentage and Las transmission percentage. Highly effective: \(Ct \geq 36.0 \); Effective: \(36.0 > Ct \geq 32.0 \); Partly effective: \(32.0 > Ct \geq 28.0 \); Non-effective: \(Ct < 28.0 \).
Scions survival rate and rootstock infection rate (A) of rootstock and their grafted HLB-affected scions treated with different chemical compounds (PS: 1.0g/L penicillin G and 100 mg/L streptomycin; Ksg: 1.0 g/L Kasugamycin; Oxy: 1.0 g/L Oxytetracycline; Met: 100 mg/L Metronidazole; DBNPA: 200 μl/liter of 20% solution of the biocide agent 2,2-dibromo-3-nitrilopropionamide; CK: Tap water was used as a control).
Las bacterial titers (B) of rootstock and their grafted HLB-affected scions treated with different chemical compounds (PS: 1.0g/L penicillin G and 100 mg/L streptomycin; Ksg: 1.0 g/L Kasugamycin; Oxy: 1.0 g/L Oxytetracycline; Met: 100 mg/L Metronidazole; DBNPA: 200 μl/liter of 20% solution of the biocide agent 2,2-dibromo-3-nitrilopropionamide; CK: Tap water was used as a control).
HLB-affected citrus in field treated with antimicrobial compounds

Published in *Phytopathology* 2011(101):1097
Effective compounds evaluated by graft-based screening method

<table>
<thead>
<tr>
<th>Chemical compounds</th>
<th>Ct value</th>
<th>Phytotoxicity(Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicilin</td>
<td>39.7±0.1</td>
<td>N</td>
</tr>
<tr>
<td>Actidione (cycloheximide)</td>
<td>39.2±0.8</td>
<td>Y</td>
</tr>
<tr>
<td>80WG</td>
<td>35.8±1.1</td>
<td>N</td>
</tr>
<tr>
<td>SAR</td>
<td>37.8±0.1</td>
<td>N</td>
</tr>
<tr>
<td>Sulfadimethoxine sodium</td>
<td>36.8±1.7</td>
<td>N</td>
</tr>
<tr>
<td>Nicotine</td>
<td>36.3±0.4</td>
<td>Y</td>
</tr>
<tr>
<td>Ciprofloxacin hydrochloride</td>
<td>35.7±3.5</td>
<td>N</td>
</tr>
<tr>
<td>Sulfathiazole sodium</td>
<td>35.7±1.5</td>
<td>N</td>
</tr>
<tr>
<td>DL-buthionine-sulfoximine</td>
<td>35.6±0.3</td>
<td>N</td>
</tr>
<tr>
<td>Silver colloidal</td>
<td>35.0±1.8</td>
<td>N</td>
</tr>
<tr>
<td>Poly-l-arginine</td>
<td>34.8±2.1</td>
<td>N</td>
</tr>
<tr>
<td>Surfactin from bacillus subtilis</td>
<td>34.8±0.7</td>
<td>N</td>
</tr>
<tr>
<td>Poly-D-lysine</td>
<td>34.5±1.3</td>
<td>N</td>
</tr>
<tr>
<td>P-cymene</td>
<td>34.0±1.1</td>
<td>N</td>
</tr>
<tr>
<td>Carvacrol</td>
<td>33.9±3.1</td>
<td>N</td>
</tr>
<tr>
<td>Zhongshengmycin</td>
<td>33.7±1.0</td>
<td>N</td>
</tr>
<tr>
<td>Silver nitrate</td>
<td>32.9±1.6</td>
<td>N</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>32.6±2.5</td>
<td>N</td>
</tr>
<tr>
<td>CK</td>
<td>25.3±0.8</td>
<td>N</td>
</tr>
</tbody>
</table>
* Bark application delivered penicillin more efficiently than foliar spray.
Duration of Penicillin in Plant

![Graph showing the log2 of average radius (mm) of Penicillin over days after treatment.](image)

- **A avg**
- **B avg**
- **C avg**

Days after treatment:
- 0
- 2
- 4
- 6
- 8
- 10
- 12
- 14
- 16
SECOND QUESTION: Can Basal Bark Application Treatment Reduce Clas Abundance in Infected Citrus? (Monthly Applications over ~ 1 year of symptomatic potted trees ~ 1 meter)
FUTURE RESEARCH

- Develop more efficient delivery systems to enable chemicals to quickly become systemic in the citrus.

- Develop a control-released formula of the screened compounds coupled with thermotherapy.

- Discover most potent actives to be registered for use in citrus.